Moment Methods for Exotic Volatility Derivatives
نویسندگان
چکیده
The latest generation of volatility derivatives goes beyond variance and volatility swaps and probes our ability to price realized variance and sojourn times along bridges for the underlying stock price process. In this paper, we give an operator algebraic treatment of this problem based on Dyson expansions and moment methods and discuss applications to exotic volatility derivatives. The methods are quite flexible and allow for a specification of the underlying process which is semi-parametric or even non-parametric, including state-dependent local volatility, jumps, stochastic volatility and regime switching. We find that volatility derivatives are particularly well suited to be treated with moment methods, whereby one extrapolates the distribution of the relevant path functionals on the basis of a few moments. We consider a number of exotics such as variance knockouts, conditional corridor variance swaps, gamma swaps and variance swaptions and give valuation formulas in detail.
منابع مشابه
Fourier transform algorithms for pricing and hedging discretely sampled exotic variance products and volatility derivatives under additive processes
We develop efficient fast Fourier transform algorithms for pricing and hedging discretely sampled variance products and volatility derivatives under additive processes (time-inhomogeneous Lévy processes). Our numerical algorithms are non-trivial versions of the Fourier space time stepping method to nonlinear path dependent payoff structures, like those in variance products and volatility deriva...
متن کاملNumerical Algorithms for Pricing Discrete Variance and Volatility Derivatives under Time-changed Lévy Processes
We propose robust numerical algorithms for pricing discrete variance options and volatility swaps under general time-changed Lévy processes. Since analytic pricing formulas of these derivatives are not available, some of the earlier pricing methods use the quadratic variation approximation for the discrete realized variance. While this approximation works quite well for long-maturity options on...
متن کاملPricing timer options and variance derivatives with closed-form partial transform under the 3/2 model
Most of the empirical studies on stochastic volatility dynamics favour the 3/2 specification over the square-root (CIR) process in the Heston model. In the context of option pricing, the 3/2 stochastic volatility model (SVM) is reported to be able to capture the volatility skew evolution better than the Heston model. In this article, we make a thorough investigation on the analytic tractability...
متن کاملExotic derivatives under stochastic volatility models with jumps
In equity and foreign exchange markets the risk-neutral dynamics of the underlying asset are commonly represented by stochastic volatility models with jumps. In this paper we consider a dense subclass of such models and develop analytically tractable formulae for the prices of a range of first-generation exotic derivatives. We provide closed form formulae for the Fourier transforms of vanilla a...
متن کاملExotic Geometric Average Options Pricing under Stochastic Volatility
This paper derives semi-analytical pricing formulae for geometric average options (GAO) within a stochastic volatility framework. Assuming a general mean reverting process for the underlying asset and a square-root process for the volatility, the cross-moment generating function is derived and the cumulative probabilities are recovered using the Gauss-Laguerre quadrature rule. Fixed and floatin...
متن کامل